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Plan for this lecture

1 Deterministic chaos
2 Entropies
3 Dimension

Ressources:
• https://personal-homepages.mis.mpg.de/olbrich/ - in

particular the lecture on "Data analysis and modeling".
• Entropy rate: Anatole Katok and Boris Hasselblatt:
Introduction to the modern theory of dynamical systems
• Scale dependent entropies: Pierre Gaspard and Xiao-Jing
Wang, Noise, chaos, and (ε,τ)-entropy per unit time, Physics
Reports, 235 (1993), 291 - 343.
• Dimensions: Yakov Pesin and Howerd Weiss, The multifractal
analysis of Gibbs measures: Motivation, mathematical
foundation, and examples, Chaos 7, 89 (1997).
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A paper in Nature 1998

Brownian motion:

h(ε, τ) ≤ AD
ε2

Deterministic systems:

h(ε, τ) ≤ hKS =
∑
λi>0

λi
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Entropy Random variable

Probability space (Ω,A, P )
Set of possible events Ω: Set of outcomes of an random

experiment — in the case of a coin toss
Ω = (heads, tails). Elements denoted by ω ∈ Ω.

σ-algebra of subsets A: Set of subsets of Ω.
Probability measure P : Each set of events A ⊆ A has a

probability 0 ≤ P (A) ≤ 1. P (Ω) = 1.

Random variable X
Measureable function X : (Ω,A)→ S to a measurable space S
(frequently taken to be the real numbers with the standard
measure). The probability measure PX−1 : S → R associated to
the random variable is defined by PX−1(s) = P (X−1(s)). A
random variable has either an associated probability distribution
(discrete random variable) or probability density function
(continuous random variable).
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Entropy Discrete random variable

A random variable X is said to be discrete if the set
{X(ω) : ω ∈ Ω} (i.e. the range of X) is finite or countable.

Alphabet: Set X of values of the random variable X.
Probability: p(x) = P (X = x), x ∈ X .
Normalization: ∑

x∈X
p(x) = 1

Expectation value of X:
EP [X] =

∑
x∈X

xp(x)
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Entropy Continuous random variable

A random variable X is said to be continuous if it has a
cumulative distribution function which is absolutely continuous.
Probability density p(x)

P (a ≤ X ≤ b) =
∫ b

a
p(x)dx .

Cumulative distribution

P≤(x) = P (X ≤ x) =
∫ x

−∞
p(y)dy

Normalization ∫ xmax

xmin

p(x)dx = 1 .

Change of variable y = f(x) (f invertible)

p(x)dx = q(y)dy ⇒ q(y) = p(x)
df/dx

∣∣∣∣
x=f−1(y)
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Entropy Shannon entropy

• Shannon 1948: How much choice is involved in the selection
of an event with n possibilities and probabilities p1, . . . , pn?
• If we have a random variable X with a probability distribution
p(x) the uncertainty about the outcome x of a measurement
of X is given by the entropy
• Entropy of a discrete random variable

H(X) = −
∑
x∈X

p(x) log p(x) .

• Entropy can be considered as a measure of variety or disorder
(“objective”) or as a measure of uncertainty (“subjective”)
• Information reduces uncertainty, i.e. it can be quantified by
differences between uncertainties, that is: entropies.
• The entropy can be considered as the expextation value of

log 1/p(x):
H(X) = EP [log 1

p(x) ] .
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Entropy Uniqueness of entropy

Are there other functions, which are suitable as a measure of
uncertainty?

Theorem: The following three conditions determine the function
H(p1, . . . , pn) up to a multiplicative constant, whose value serves
only to determine the size of the unit of information.

1 H(p, 1− p) is a continuous function of p ∈ [0, 1].
2 Hn(p1, . . . , pn) is a symmetric function of all of its arguments.
3 If pn = q1 + q2 > 0 then

H(p1, p2, p3, . . . , q1, q2) = H(p1, p2, p3, . . . , pn)+pnH
(
q1
pn
,
q2
pn

)
.

The last property called “additivity” is dropped for some entropies
such as the Renyi entropies.
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Conditional entropy

• Knowing Y might reduce the uncertainty about X if both are
not statistically independent.
• The uncertainty of X having already observed Y = y can be
expressed as

H(X|Y = y) = −
∑
x∈X

p(x|y) log p(y|x) .

• This can be averaged also over Y giving

H(X|Y ) = H(X,Y )−H(Y ) .

H(X|Y ) is called conditional entropy.
• Chain rule:

H(X,Y ) = H(X) +H(Y |X) .
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Entropy rate Stochastic stationary process

• A stochastic process is indexed sequence of random
variables. The process is characterized by joint probabilities

Pr{(X1, X2, ..., Xn) = (x1, x2, . . . , xn)} = p(x1, . . . , xn)

with (x1, . . . , xn) ∈ X n.
• A stochastic process is said to be stationary if the joint
distribution of any subset of random variables is invariant with
respect to shifts in the time index; that is

Pr{X1 = x1, X2 = x2, . . . , Xn = xn}
= Pr{X1+l = x1, X2+l = x2, . . . , Xn+l = xn}

for every n and every shift l and for all x1, x2, . . . , xn ∈ X .
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Entropy rate Symbol sequence

Block entropy H(X1, X2, . . . , Xn) is the of the probaility
distribution on sequences of length n. Entropy rate as entropy per
symbol:

h∞ = lim
n→∞

1
n
H(X1, X2, . . . , Xn)

Entropy rate as conditional entropy given the past:

h′∞ = lim
n→∞

H(Xn|Xn−1, . . . , X1)

Theorem: For a stationary stochastic process the limits exists and
are equal.

Can be proven using
Theorem: (Cesáro mean) If an → a and bn = 1

n

∑n
i=1 ai, then

bn → a.
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Entropy rate Dynamical system

• Deterministic dynamical system with continuous state
variables x.

xn+1 = F (xn)
• Invariant measure

µ(F−1A) = µ(A) ∀ A ∈ X .

• A collection of measurable subsets, ξ = {Cα ∈ X |α ∈ I} is
called a measurable partition of X if

1 µ(X \ ∪α∈ICα) = 0, i.e. the partition “contains” the whole
measure.

2 µ(Cα1 ∩ Cα2) = 0 if α1 6= α2, i.e. the cells Cα of the partition
are disjoint.

The entropy of µ with resepect to the partition ξ is then

H(ξ) := Hµ(ξ) = −
∑
α∈I

µ(Cα) logµ(Cα) ≥ 0 .
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Entropy rate Dynamical system

• By observing the time series {xi} with partition ξ we are
generating a symbol sequence αi
• Because p(α) = µ(Cα) we can write the entropy of the
partition also as

H(ξ) = H(α) = −
∑
α∈I

p(α) log p(α)

• Joint partition for two partitions ξ = {Cα|α ∈ I} and
η = {Dβ|β ∈ J}

ξ ∨ η := {C ∩D|C ∈ ξ,D ∈ η, µ(C ∩D) > 0}

• Joint partition of ξ and its preimages under F

ξF−n := ξ ∨ F−1(ξ) ∨ . . . ∨ F−n+1(ξ) .

• What corresponds then to ξF−n? Being in a cell of this
partition means that the trajectory was at time n in Cαn , at
n− 1 in Cαn−1 and so on.
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Entropy rate KS-entropy

• Thus the measure of one cell of this partition corresponds to
the joint probability p(αn, αn−1, . . . , α1).
• The metric entropy of the transformation F relative to the

partition ξ

h(F, ξ) := hµ(F, ξ) := lim
n→∞

1
n
H(ξF−n)

• The KS-entropy of F with respect to µ is then defined as the
supremum over all partitions:

hKS(F ) := hµ(F ) := sup
ξ,h(ξ)<∞

hµ(F, ξ) .

A generating partition ξg is a partition for which the metric
entropy is maximal, i.e.

h(F, ξg) = hKS(F ) .
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Entropy rate Computation for model systems

• No general algorithm to find generating partitions for arbitrary
dynamical systems.
• For 1-dimensional maps it is known how to find them and for
2-d also an algorithm exists, which allowed to determine the
generating partitions for some well known systems, including
the Henon map and the standard map.
• Consider a sequence of partitions ξi with diam(ξi)→ 0.

diam(ξi) := supC∈ξ diam(C). Then h(F, ξi)→ hKS(F )
• Two limits: Infinite sequence length and infinite resoultion.
• From Lyapunov exponents:

hKS =
∑
λi>0

λi
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Entropy rate Estimation from data

• Starting point: Time series {xk} with N data points.
• Simplest idea: Partition the state space into hypercubes of
size ε transform youd data into a symbol sequence {sk}.
• Estimate an empirical probability distribution by counting the
points in the hypercubes

pi = ni
N

• Estimating the conditional entropies

h(m, ε) =H(Sm|Sm−1, . . . , S0)
=H(Sm, Sm−1, . . . , S1, S0)−H(Sm−1, . . . , S1, S0)

• Problem:

lim
ε→0

H(Sm, . . . , S1, S0) = logN

lim
ε→0

h(m, ε) = 0
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Practical example Henon map

• Henon map
xn+1 = 1.4x2

n − 0.3xn−1

• In the following 10 000 data points

Time series (part)
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Practical example Henon map

Block entropies

H(m, ε) = H(Sm, Sm−1, . . . , ..., S1)
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Practical example Henon map

Block entropies
H(m, ε) = H(Sm, Sm−1, . . . , ..., S1)

Conditional entropies
h(m, ε) = H(m+ 1, ε)−H(m, ε)
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Entropy rate Estimation from finite data

Two problems:
• Finite sample bias. There is no genera (but many specific)
solutions to resolve this problem for estimating the Shannon
entropy (rate).
• Limits m→∞ and ε→ 0 cannot be performed with finite
data.

1 A positive entropy rate for finite m does not mean, that it
remains non-zero for m→∞ until the system is Markovian.

2 A positive value for finite ε does not imply a non-zero value for
ε→ 0.

Practical solution:
• Looking for convergence in m, i.e. approximate Markovianity
• Looking for plateaus wrt ε.
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Entropy rate Estimation from finite data

Two problems:
• Finite sample bias. There is no genera (but many specific)
solutions to resolve this problem for estimating the Shannon
entropy (rate).
• Limits m→∞ and ε→ 0 cannot be performed with finite
data.

1 A positive entropy rate for finite m does not mean, that it
remains non-zero for m→∞ until the system is Markovian.

2 A positive value for finite ε does not imply a non-zero value for
ε→ 0.

Practical solution:
• Looking for convergence in m, i.e. approximate Markovianity
• Looking for plateaus wrt ε. Why is this useful?

⇒ Let’s look at dimensions!
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Fractal dimension Box counting dimension

• The box counting dimension or capacity of a set S in a metric
space:

D0 := − lim
ε→0

logN(ε)
log ε

with N(ε) being the umber of boxes of side length ε that is
required to cover the set.
• Note that partitioning the space phace into hypercubes of side
length ε created such boxes.
• Renyi dimensions are a generalization of the box counting
dimension (q = 0):

Dq = − lim
ε→0

log
∑
i p
q
i

(1− q) log ε
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Information dimension

• Applying l’Hospital’s rule to the case q = 1:

D1 = lim
ε→0

∑
i pi log pi
log ε

= − lim
ε→0

H(ε)
log ε

• With finite data → looking for "scaling regions"
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Dimension and entropie

• Asymptotic behavior of the entropy controlled by the
dimension

H(ε) ≈ (const)−D1 log ε
• We can do the same also for the other Renyi dimensions by
defining Renyi entropies

Hq = 1
1− q log

∑
i

pq

Note that the Renyi-entropies for q 6= 1 do not have the
"additivity" property.
• Using coverings instead of partitions gives also the Renyi
dimensions, but defines another set of entropies (Hentschel
and Procaccia 1983)

H ′q(ε) = 1
1− q log

(
1
N

∑
i

µ(B(xi, ε))q−1
)
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Correlation dimension and entropy

• Correlation sum: Number of pairs of points in phase space
with a distance ≤ ε.

C(m, ε,N) = 2
(N −m) · (N −m− 1)

N−m∑
i=1

N∑
j=i+1

Θ(ε−||xi−xj ||)

• Correlation dimension for finite epsilon

D2(m, ε) = d logC(m, ε)
d log ε

= lim
∆→0

lim
N→∞

ε

C(m, ε,N)
C(m, ε+ ∆, N)− C(m, ε,N)

∆
D2 = lim

ε→0
D2(m, ε)

• Correlation entropy

H ′q=2(m, ε) = − logC(m, ε)
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Henon map Correlation dimension

Correlation sum
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• No finite sample bias

• Can be also used to estimate an entropy rate using the
correlation entropy
• Requires again the identification of a scaling range
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Henon map Correlation dimension

Conditional entropy
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Deterministic vs. stochastic behavior Entropies

Deterministic: Lorenz attractor

-10
0

10
xHtL

-10

0

10xHt - 10 DL

-10

0

10

xHt - 20 DL

Hm(ε) ≈ const−D log ε
for m > D

Stochastic: AR(2) model
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Deterministic vs. stochastic behavior Conditional entropies

Deterministic: Lorenz system

• Entropy rate asymptotically
not depending on ε

Stochastic: AR(1)

xn+1 = axn + ξn+1

• Entropy rate ∝ − log ε
• Asymptotic behavior from
differential entropies
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Deterministic vs. stochastic behavior Summary

Deterministic Deterministic Stochastic
non-chaotic chaotic

Dimension finite finite embedding
dimension

Entropy rate zero finite diverges
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Different behaviors on different scales The effect of noise

Noisy Gauss map

xn+1 = exp(−a(xn − 0.5)2)− bxn−1 + σξ

with a = 5.8 b = 0.1 and σ = 0.01.

Delay plot
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Different behaviors on different scales The effect of noise

Noisy Gauss map

xn+1 = exp(−a(xn − 0.5)2)− bxn−1 + σξ

Correlation dimension
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⇒ Stochastic system that looks deterministic on large scales
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Scale dependent behavior High-dimensional systems

Unidirectionally coupled tent maps:

xi(n+ 1) = (1− σ)f(xi(n)) + σf(xi−1(n))

with f(x) = 1− |2(x− 1/2)| being the tent map.

Dimension
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E. Olbrich, R. Hegger and H. Kantz, Analysing local observations of weakly coupled maps, Physics Letters A244
(1998), 538-544.
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Deterministic systems mimicking random systems

Deterministic system behaving stochastically on large length
scales

H. Kantz and E. Olbrich, The transition from deter-
ministic chaos to a stochastic process, Physica A 253
(1998), 105-107.

xn+1 = 1− 2x2
n

yn+1 = λyn + νxn

with λ = e−γτ and ν =
√
τ con-

verges for τ → 0 to the Ornstein-
Uhlenbeck process

dY = −γY dt+ dW

if observed at constant sampling
time ∆ = jτ with j being the
time delay for observing yn.

Relevant for random number generators.
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Non-chaotic systems mimicking chaotic or stochastic systems

• Piecewise linear, but discontinous maps with an absolute value
of the slope of the pieces < 1.
• Related phenomenon: stable chaos - systems that are linearly
stable, but appear to be chaotic for finite size perturbations,
e.g. neural net models. Can be characterized by finite size
Lyapunov exponents (FSLE).
• Coupling a large number of harmonic oscillators with the
correct amplitudes and frequencies could generate the
behavior of Brownian motion or other dissipative processes on
large scales.

M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani.
Chaos or noise: Difficulties of a distinction. Physical Review E 62.1
(2000): 427.
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Summary

• Dynamical systems can show different behavior on different
scales

• If we analyze time series from real-world systems and not from
mathematical models it is not useful to ask, whether the
system is deterministic or stochastic, chaotic or non-chaotic.
Instead one can ask, how the system is behaving on different
scales.
• Brownian motion appears as a stochastic process on the
observational accessible scales. Such behvior can be created
by stochastic, deterministic chaotic or deterministic
non-chaotic (but high-dimensional) models. These differences
would be only visible on much smaller scales.
• There practical limits for the estimation of entropies and
dimensions, in particular for high-dimensional systems,
because the rquirements for the number of points increase
exponentially.
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